Ihre Browserversion ist veraltet. Wir empfehlen, Ihren Browser auf die neueste Version zu aktualisieren.

Organizers

Zakia HammalZakia HammalZakia Hammal

Carnegie Mellon University
The Robotics Institut
Pittsbourgh, PA (USA)

Steffen Walter

Steffen Walter, UlmSteffen Walter, Ulm

Ulm University (D)
Medical Psychology

Nadia Berthouze NadiaNadia

University College London (UK)
Affective Interaction and Computing

Pain Assessment

The Fifth Workshop on Automated Assessment of Pain

Schedule

Monday, October 13rd, 2025
<click here for pdf>

9 h: Opening: Zakia Hammal, Steffen Walter, and Nadia Berthouze

9-10 h: Invited Talk

10-10.30 h: Coffee Break

10.30-15.45 h: Paper presentation

  • 10.30 h: Sai Revanth Reddy Boda et al.
    Canonical Time Series Features for Pain Classification

  • 10.45 h: Richard A. A. Jonker et al.
    When Features Matter More than Sequence: A Case for Tabular In Context Learning in Pain Classification

  • 11 h: Tahia Tazin et al.
    Feel the Pain: An Interpretable Multimodal Approach for Physiological Signal-Based Pain Detection

  • 11.15 h: Stefanos Gkikas et al.
    Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis

  • 11.30 h: Raul Fernandez Rojas et al.
    The AI4Pain Grand Challenge 2025: Advancing Pain Assessment with Multimodal Physiological Signals

  • 11.45 h: Anup Kumar Gupta et al.
    PainXtract: A Multimodal System for Multiclass Pain Classification Using Physiological Signals

12-13.30 h: Lunch break

  • 13.30 h: Javier Orlando Pinzon-Arenas et al.
    A Multimodal Deep Learning Exploration for Pain Intensity Classification

  • 13.45 h: Miguel Javierre et al.
    Explaining Pain by Combining Deep Learning Models and Physiology-Driven Ensembles using PPG, EDA, and Respiration

  • 14 h: Rupal Agarwal et al.
    EnsembleIQ-Pain: Intelligent Cluster Calibration for Personalized Pain Detection

  • 14.15 h: Sajeeb Datta et al.
    Painthenticate: Feature Engineering on Multimodal Physiological Signals

14.30-15 h: Coffee Break

  • 15 h: Anis Elebiary et al.
    Investigation into Unimodal Versus Multimodal Pain Recognition from Physiological Signals

  • 15.15 h: Stefanos Gkikas et al.
    Efficient Pain Recognition via Respiration Signals: A Single Cross-Attention Transformer Multi-Window Fusion Pipeline

  • 15.30 h: Stefanos Gkikas et al.
    Multi-Representation Diagrams for Pain Recognition: Integrating Various Electrodermal Activity Signals into a Single Image 

15.45-16 h: Closing